Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 137
Filtrar
1.
iScience ; 27(4): 109579, 2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38617560

RESUMEN

The stringent response of bacteria to starvation and stress also fulfills a role in addressing the threat of antibiotics. Within this stringent response, (p)ppGpp, synthesized by RelA or SpoT, functions as a global alarmone. However, the effect of this (p)ppGpp on resistance development is poorly understood. Here, we show that knockout of relA or rpoS curtails resistance development against bactericidal antibiotics. The emergence of mutated genes associated with starvation and (p)ppGpp, among others, indicates the activation of stringent responses. The growth rate is decreased in ΔrelA-resistant strains due to the reduced ability to synthesize (p)ppGpp and the persistence of deacylated tRNA impeding protein synthesis. Sluggish cellular activity causes decreased production of reactive oxygen species (ROS), thereby reducing oxidative damage, leading to weakened DNA mismatch repair, potentially reducing the generation of mutations. These findings offer new targets for mitigating antibiotic resistance development, potentially achieved through inhibiting (p)ppGpp or ROS synthesis.

2.
Int J Food Microbiol ; 418: 110709, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38663147

RESUMEN

Wet heat treatment is a commonly applied method in the food and medical industries for the inactivation of microorganisms, and bacterial spores in particular. While many studies have delved into the mechanisms underlying wet heat killing and spore resistance, little attention has so far been dedicated to the capacity of spore-forming bacteria to tune their resistance through adaptive evolution. Nevertheless, a recent study from our group revealed that a psychrotrophic strain of the Bacillus cereus sensu lato group (i.e. Bacillus weihenstephanensis LMG 18989) could readily and reproducibly evolve to acquire enhanced spore wet heat resistance without compromising its vegetative cell growth ability at low temperatures. In the current study, we demonstrate that another B. cereus strain (i.e. the mesophilic B. cereus sensu stricto ATCC 14579) can acquire significantly increased spore wet heat resistance as well, and we subjected both the previously and currently obtained mutants to whole genome sequencing. This revealed that five out of six mutants were affected in genes encoding regulators of the spore coat and exosporium pathway (i.e. spoIVFB, sigK and gerE), with three of them being affected in gerE. A synthetically constructed ATCC 14579 ΔgerE mutant likewise yielded spores with increased wet heat resistance, and incurred a compromised spore coat and exosporium. Further investigation revealed significantly increased spore DPA levels and core dehydration as the likely causes for the observed enhanced spore wet heat resistance. Interestingly, deletion of gerE in Bacillus subtilis 168 did not impose increased spore wet heat resistance, underscoring potentially different adaptive evolutionary paths in B. cereus and B. subtilis.

3.
J Proteome Res ; 23(2): 596-608, 2024 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-38190553

RESUMEN

Reliable and comprehensive multi-omics analysis is essential for researchers to understand and explore complex biological systems more completely. Bacillus subtilis (B. subtilis) is a model organism for Gram-positive spore-forming bacteria, and in-depth insight into the physiology and molecular basis of spore formation and germination in this organism requires advanced multilayer molecular data sets generated from the same sample. In this study, we evaluated two monophasic methods for polar and nonpolar compound extraction (acetonitrile/methanol/water; isopropanol/water, and 60% ethanol) and two biphasic methods (chloroform/methanol/water, and methyl tert-butyl ether/methanol/water) on coefficients of variation of analytes, identified metabolite composition, and the quality of proteomics profiles. The 60% EtOH protocol proved to be the easiest in sample processing and was more amenable to automation. Collectively, we annotated 505 and 484 metabolites and identified 1665 and 1562 proteins in B. subtilis vegetative cells and spores, respectively. We also show differences between vegetative cells and spores from a multi-omics perspective and demonstrate that an integrative multi-omics analysis can be implemented from one sample using the 60% EtOH protocol. The results obtained by the 60% EtOH protocol provide comprehensive insight into differences in the metabolic and protein makeup of B. subtilis vegetative cells and spores.


Asunto(s)
Bacillus subtilis , Proteómica , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Esporas Bacterianas/genética , Esporas Bacterianas/metabolismo , Metanol , Agua/metabolismo , Etanol/metabolismo
4.
Antimicrob Agents Chemother ; 68(1): e0085023, 2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38051079

RESUMEN

Bacteria possess the ability to enter a growth-arrested state known as persistence in order to survive antibiotic exposure. Clinically, persisters are regarded as the main causative agents for chronic and recurrent infectious diseases. To combat this antibiotic-tolerant population, a better understanding of the molecular physiology of persisters is required. In this study, we collected samples at different stages of the biphasic kill curve to reveal the dynamics of the cellular molecular changes that occur in the process of persister formation. After exposure to antibiotics with different modes of action, namely, vancomycin and enrofloxacin, similar persister levels were obtained. Both shared and distinct stress responses were enriched for the respective persister populations. However, the dynamics of the presence of proteins linked to the persister phenotype throughout the biphasic kill curve and the molecular profiles in a stable persistent population did show large differences, depending on the antibiotic used. This suggests that persisters at the molecular level are highly stress specific, emphasizing the importance of characterizing persisters generated under different stress conditions. Additionally, although generated persisters exhibited cross-tolerance toward tested antibiotics, combined therapies were demonstrated to be a promising approach to reduce persister levels. In conclusion, this investigation sheds light on the stress-specific nature of persisters, highlighting the necessity of tailored treatment approaches and the potential of combined therapy.


Asunto(s)
Infecciones Estafilocócicas , Staphylococcus aureus , Humanos , Antibacterianos/uso terapéutico , Infecciones Estafilocócicas/tratamiento farmacológico , Bacterias , Fenotipo
5.
iScience ; 26(12): 108373, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-38025768

RESUMEN

Reactive oxygen species (ROS) produced as a secondary effect of bactericidal antibiotics are hypothesized to play a role in killing bacteria. If correct, ROS may play a role in development of de novo resistance. Here we report that single-gene knockout strains with reduced ROS scavenging exhibited enhanced ROS accumulation and more rapid acquisition of resistance when exposed to sublethal levels of bactericidal antibiotics. Consistent with this observation, the ROS scavenger thiourea in the medium decelerated resistance development. Thiourea downregulated the transcriptional level of error-prone DNA polymerase and DNA glycosylase MutM, which counters the incorporation and accumulation of 8-hydroxy-2'-deoxyguanosine (8-HOdG) in the genome. The level of 8-HOdG significantly increased following incubation with bactericidal antibiotics but decreased after treatment with the ROS scavenger thiourea. These observations suggest that in E. coli sublethal levels of ROS stimulate de novo development of resistance, providing a mechanistic basis for hormetic responses induced by antibiotics.

6.
Microb Cell Fact ; 22(1): 200, 2023 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-37777723

RESUMEN

BACKGROUND: Bacillus subtilis has been established as model microorganism for fundamental research in the laboratory on protein production/secretion and sporulation and as model bacterium for controlling spoilage in the food industry. It has also been used for production of (commercial) enzymes and several secondary metabolites such as vitamins. However, this doesn't fully reflect the potential of B. subtilis as a cell-factory. Here, various strains of B. subtilis, including food-grade, spore-deficient strains and industrially used strains, were compared for their growth and metabolic potential. Industry-relevant parameters were analyzed for all strains under various aeration regimes, under anaerobic conditions, in various nutritious and nutrient-limited cultivation media, with and without organic nitrogen sources, and with and without sugar. RESULTS: Practical experiments were conducted to compare industrial relevant properties like growth rates, intracellular components and extracellular metabolite profile of different B. subtilis strains. Based on growth flexibility in different media, we found that some strains like NCIB3610 and DSM1092 are adapted to inorganic or organic nitrogen source utilization, which is highly relevant when considering a biorefinery approach using various cheap and abundant waste/sidestreams. Secondly, spore-deficient strains such as 3NA, 168 S and PY79S, showed advantages in microbial protein and acetolactate pathway expression, which is associated with applications in food industry for protein supplement and diacetyl production. Lastly, WB800 and PY79S exhibited potential for fermentative production of dipicolinic acid, 2,3-butanediol and lactic acid that could serve as precursors for biopolymers. CONCLUSION: This study demonstrates the broad potential for more extensive industrial use of Bacillus subtilis in the (bio-based) chemical industry for use of sidestreams, in the personal care industry, in the food industry for food additive production, and in the bio-sustainable industry for biofuel and bio-degradable plastic precursors production. In addition, selecting different B. subtilis strains for specific purposes makes full use of the diversity of this species and increases the potential of B. subtilis in its contribution to the bio-based economy.


Asunto(s)
Bacillus subtilis , Ingredientes Alimentarios , Bacillus subtilis/metabolismo , Fermentación , Biopolímeros , Nitrógeno/metabolismo
7.
Front Microbiol ; 14: 1161604, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37113233

RESUMEN

2Duf, named after the presence of a transmembrane (TM) Duf421 domain and a small Duf1657 domain in its sequence, is likely located in the inner membrane (IM) of spores in some Bacillus species carrying a transposon with an operon termed spoVA 2mob. These spores are known for their extreme resistance to wet heat, and 2Duf is believed to be the primary contributor to this trait. In this study, we found that the absence of YetF or YdfS, both Duf421 domain-containing proteins and found only in wild-type (wt) B. subtilis spores with YetF more abundant, leads to decreased resistance to wet heat and agents that can damage spore core components. The IM phospholipid compositions and core water and calcium-dipicolinic acid levels of YetF-deficient spores are similar to those of wt spores, but the deficiency could be restored by ectopic insertion of yetF, and overexpression of YetF increased wt spore resistance to wet heat. In addition, yetF and ydfS spores have decreased germination rates as individuals and populations with germinant receptor-dependent germinants and increased sensitivity to wet heat during germination, potentially due to damage to IM proteins. These data are consistent with a model in which YetF, YdfS and their homologs modify IM structure to reduce IM permeability and stabilize IM proteins against wet heat damage. Multiple yetF homologs are also present in other spore forming Bacilli and Clostridia, and even some asporogenous Firmicutes, but fewer in asporogenous species. The crystal structure of a YetF tetramer lacking the TM helices has been reported and features two distinct globular subdomains in each monomer. Sequence alignment and structure prediction suggest this fold is likely shared by other Duf421-containing proteins, including 2Duf. We have also identified naturally occurring 2duf homologs in some Bacilli and Clostridia species and in wt Bacillus cereus spores, but not in wt B. subtilis. Notably, the genomic organization around the 2duf gene in most of these species is similar to that in spoVA 2mob, suggesting that one of these species was the source of the genes on this operon in the extremely wet heat resistant spore formers.

8.
FEMS Microbiol Rev ; 47(2)2023 03 10.
Artículo en Inglés | MEDLINE | ID: mdl-36931888

RESUMEN

The human gut harbors native microbial communities, forming a highly complex ecosystem. Synthetic microbial communities (SynComs) of the human gut are an assembly of microorganisms isolated from human mucosa or fecal samples. In recent decades, the ever-expanding culturing capacity and affordable sequencing, together with advanced computational modeling, started a ''golden age'' for harnessing the beneficial potential of SynComs to fight gastrointestinal disorders, such as infections and chronic inflammatory bowel diseases. As simplified and completely defined microbiota, SynComs offer a promising reductionist approach to understanding the multispecies and multikingdom interactions in the microbe-host-immune axis. However, there are still many challenges to overcome before we can precisely construct SynComs of designed function and efficacy that allow the translation of scientific findings to patients' treatments. Here, we discussed the strategies used to design, assemble, and test a SynCom, and address the significant challenges, which are of microbiological, engineering, and translational nature, that stand in the way of using SynComs as live bacterial therapeutics.


Asunto(s)
Enfermedades Gastrointestinales , Microbioma Gastrointestinal , Microbiota , Humanos , Bacterias
9.
J Appl Microbiol ; 134(3)2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36841229

RESUMEN

AIMS: This work aimed to characterize spore inner membrane (IM) properties and the mechanism of spore killing by wet heat and H2O2 with spores overexpressing the 2Duf protein, which is naturally encoded from a transposon found only in some Bacillus strains with much higher spore resistance than wild-type spores. METHODS AND RESULTS: Killing of Bacillus subtilis spores by wet heat or hydrogen peroxide (H2O2) was slower when 2Duf was present, and Ca-dipicolinic acid release was slower than killing. Viabilities on rich plates of wet heat- or H2O2 -treated spores +/- 2Duf were lower when NaCl was added, but higher with glucose. Addition of glucose but not Casamino acids addition increased treated spores' viability on minimal medium plates. Spores with 2Duf required higher heat activation for germination, and their germination was more wet-heat resistant than that of wild-type spores, processes that involve IM proteins. IM permeability and lipid mobility were lower in spores with 2Duf, although IM phospholipid composition was similar in spores +/- 2Duf. CONCLUSIONS: These results and previous work suggests that wet heat and H2O2 kill spores by damaging an IM enzyme or enzymes involved in oxidative phosphorylation.


Asunto(s)
Calor , Peróxido de Hidrógeno , Peróxido de Hidrógeno/farmacología , Peróxido de Hidrógeno/metabolismo , Bacillus subtilis/metabolismo , Esporas Bacterianas/metabolismo , Proteínas de la Membrana/metabolismo , Glucosa/metabolismo , Ácidos Picolínicos/metabolismo
10.
Neuropharmacology ; 223: 109318, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36334762

RESUMEN

The microbiota-gut-brain axis (MGBA) refers to the bidirectional communication between the brain and the gut microbiota and recent studies have linked the MGBA to health and disease. Research has so far investigated this axis mainly from microbiota to brain but less is known about the other direction. One approach to examine the MGBA from brain to microbiota is through understanding if and how neuromodulation might impact microbiota. Neuromodulation encompasses a wide range of stimulation techniques and is used to treat neurological, psychiatric and metabolic disorders, like Parkinson's Disease, depression and obesity. Here, we performed a systematic review to investigate whether neuromodulation is associated with subsequent changes in the gut microbiota. Searches in PsycINFO and MEDLINE were performed up to March 2022. Included studies needed to be clinical or preclinical studies comparing the effects of deep brain stimulation, electroconvulsive therapy, repetitive transcranial magnetic stimulation, transcranial direct current stimulation or vagal nerve stimulation on the gut microbiota before and after treatment or between active and control groups. Seven studies were identified. Neuromodulation was associated with changes in relative bacterial abundances, but not with (changes in) α-diversity or ß-diversity. Summarizing, currently reported findings suggest that neuromodulation interventions are associated with moderate changes in the gut microbiome. However, findings remain inconclusive due to the limited number and varying quality of included studies, as well as the large heterogeneity between studies. More research is required to more conclusively establish whether, and if so, via which mechanism(s) of action neuromodulation interventions might influence the gut microbiota.


Asunto(s)
Estimulación Encefálica Profunda , Estimulación Transcraneal de Corriente Directa , Estimulación del Nervio Vago , Estimulación Transcraneal de Corriente Directa/métodos , Estimulación Magnética Transcraneal/métodos , Estimulación del Nervio Vago/métodos , Estimulación Encefálica Profunda/métodos , Encéfalo
11.
Int J Mol Sci ; 23(21)2022 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-36362401

RESUMEN

Bacillus cereus is a spore-forming human pathogen that is a burden to the food chain. Dormant spores are highly resistant to harsh environmental conditions, but lose resistance after germination. In this study, we investigate the B. cereus spore proteome upon spore germination and outgrowth so as to obtain new insights into the molecular mechanisms involved. We used mass spectrometry combined with co-expression network analysis and obtained a unique global proteome view of the germination and outgrowth processes of B. cereus spores by monitoring 2211 protein changeovers. We are the first to examine germination and outgrowth models of B. cereus spores experimentally by studying the dynamics of germinant receptors, other proteins involved in spore germination and resistance, and coat and exosporium proteins. Furthermore, through the co-expression analysis of 1175 proteins identified with high quality data, germination proteome data were clustered into eight modules (termed black, blue, brown, green, red, turquoise, grey, and yellow), whose associated functions and expression profiles were investigated. Germination related proteins were clustered into blue and brown modules, the abundances of which decreased after finishing germination. In the brown and blue we identified 124 proteins that could be vital during germination. These proteins will be very interesting to study in future genetic studies regarding their function in spore revival in B. cereus.


Asunto(s)
Bacillus cereus , Esporas Bacterianas , Humanos , Bacillus cereus/genética , Esporas Bacterianas/fisiología , Proteómica , Proteoma/metabolismo , Proteínas Bacterianas/metabolismo
12.
Microorganisms ; 10(9)2022 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-36144297

RESUMEN

Fluorescent fusion proteins were expressed in Bacillus cereus to visualize the germinosome by introducing a plasmid that carries fluorescent fusion proteins of germinant receptor GerR subunits or germinosome scaffold protein GerD. The effects of plasmid insertion and recombinant protein expression on the spore proteome were investigated. Proteomic analysis showed that overexpression of the target proteins had negligible effects on the spore proteome. However, plasmid-bearing spores displayed dramatic abundance changes in spore proteins involved in signaling and metabolism. Our findings indicate that the introduction of a plasmid alone alters the spore protein composition dramatically, with 993 proteins significantly down-regulated and 415 proteins significantly up-regulated among 3323 identified proteins. This shows that empty vector controls are more appropriate to compare proteome changes due to plasmid-encoded genes than is the wild-type strain, when using plasmid-based genetic tools. Therefore, researchers should keep in mind that molecular cloning techniques can alter more than their intended targets in a biological system, and interpret results with this in mind.

13.
Microorganisms ; 10(9)2022 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-36144376

RESUMEN

Germinant receptors (GRs) are proteins in the spore-forming bacteria of Bacillus species that are crucial in triggering spore germination by sensing nutrients in the spores' environment. In the Gram-positive bacterium Bacillus cereus strain ATCC 14579, the GerR GR initiates germination with L-alanine. While we have expressed GerR subunits fused to reporter proteins from genes under control of their native promoter on plasmids in this B. cereus strain, here we sought increased flexibility in this work by studying genome integration and plasmid-borne inducible high level (over) expression. However, construction of chromosomal integrants to visualize and localize the GerR B subunit fused to fluorescent reporter protein SGFP2 was not successful in this B. cereus strain using constructs with either shorter (~600 bp) or longer (~1200 bp) regions of homology to the gerR operon. This failure was in contrast to successful IPTG-inducible expression of GerRB-SGFP2 from plasmid pDG148 in vegetative cells and dormant spores, as fluorescent GerRB-SGFP2 foci were present in vegetative cells and the protein was detected by Western blot analysis. In dormant spores, the fluorescence intensity with IPTG-inducible expression from pDG148-gerRB-SGFP2 was significantly higher than in wild type spores. However, the full length GerRB-SGFP2 protein was not detected in spores using Western blots. Clearly, there are still challenges in the construction of B. cereus strains harboring fluorescent reporter proteins in which tagged proteins are encoded by genes incorporated in the chromosome or on extrachromosomal expression plasmids.

14.
PLoS One ; 17(8): e0272607, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35947590

RESUMEN

INTRODUCTION: A widely cited story on the origins of fecal transplantation suggests that German soldiers in North Africa used camel feces containing Bacillus subtilis to treat dysentery in World War 2. We investigated if this story is accurate and if there is sufficient Bacillus subtilis in camel feces to be potentially therapeutic. METHODS AND RESULTS: A literature analysis shows that all references to the story are based on a single review paper that mentions the use of camel feces in passing and only provides indirect evidence for this claim. An extensive literature search failed to find independent evidence that camel feces has traditionally been used in the treatment of dysentery in North Africa. With 16S sequence analysis we did not detect Bacillus subtilis in feces from two different Egyptian camels. Using a more sensitive culture-based assay we could detect low amounts of Bacillus subtilis spores in these fecal samples, with comparable concentrations to those present in human feces and soil. CONCLUSIONS: Because we could not find evidence for the use of camel feces in the treatment of diarrhea and because we show that only low amounts of Bacillus subtilis spores are present in camel feces, we conclude that the use of camel feces should no longer be mentioned in the context of origins of fecal transplantation.


Asunto(s)
Bacillus subtilis , Disentería , Animales , Camelus , Trasplante de Microbiota Fecal , Heces , Humanos , Esporas Bacterianas
15.
PLoS One ; 17(7): e0270205, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35797379

RESUMEN

Resistance plasmids are crucial for the transfer of antimicrobial resistance and thus form a matter of concern for veterinary and human healthcare. To study plasmid transfer, foodborne Escherichia coli isolates harboring one to five known plasmids were co-incubated with a general recipient strain. Plasmid transfer rates under standardized conditions varied by a factor of almost 106, depending on the recipient/donor strain combination. After 1 hour transconjugants never accounted for more than 3% of the total number of cells. Transconjugants were formed from 14 donors within 1 hour of co-incubation, but in the case of 3 donors 24 hours were needed. Transfer rates were also measured during longer co-incubation, between different species and during repeated back and forth transfer. Longer co-incubation resulted in the transfer of more types of resistance. Maximum growth rates of donor strains varied by a factor of 3. Donor strains often had higher growth rates than the corresponding transconjugants, which grew at the same rate as or slightly faster than the recipient. Hence, possessing one or more plasmids does not seem to burden the harboring strain metabolically. Transfer was species specific and repeated transfer of one plasmid did not result in different transfer rates over time. Transmission Electron microcopy was used to analyze the morphology of the connection between co-incubated strains. Connection by more pili between the cells resulted in better aggregate formation and corresponded with higher transfer rates.


Asunto(s)
Infecciones por Escherichia coli , Escherichia coli , Antibacterianos , Conjugación Genética , Humanos , Carne , Plásmidos/genética
16.
Plasmid ; 122: 102640, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35870604

RESUMEN

Resistance plasmids mediate the rapid spread of antimicrobial resistance, which poses a threat to veterinary and human healthcare. This study addresses the question whether resistance plasmids from Escherichia coli isolated from foodstuffs always transfer unchanged to recipient E. coli cells, or that genetic editing can occur. Strains containing between one and five different plasmids were co-incubated with a standard recipient strain. Plasmids isolated from transconjugant strains were sequenced using short and long read technologies and compared to the original plasmids from the donor strains. After one hour of co-incubation only a single plasmid was transferred from donor to recipient strains. If the donor possessed several plasmids, longer co-incubation resulted in multiple plasmids being transferred. Transferred plasmids showed mutations, mostly in mobile genetic elements, in the conjugative transfer gene pilV and in genes involved in plasmid maintenance. In one transconjugant, a resistance cluster encoding tetracycline resistance was acquired by the IncI1 plasmid from the IncX1 plasmid that was also present in the donor strain, but that was not transferred. A single plasmid transferred twelve times back and forth between E. coli strains resulted in a fully conserved plasmid with no mutations, apart from repetitive rearrangements of pilV from and back to its original conformation in the donor strain. The overall outcome suggests that some genetic mutations and rearrangements can occur during plasmid transfer. The possibility of such mutations should be taken into consideration in epidemiological research aimed at attribution of resistance to specific sources.


Asunto(s)
Infecciones por Escherichia coli , Escherichia coli , Antibacterianos/farmacología , Conjugación Genética , Escherichia coli/genética , Transferencia de Gen Horizontal , Humanos , Carne , Plásmidos/genética
17.
mSystems ; 7(3): e0018022, 2022 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-35695433

RESUMEN

Early-life stress (ELS) leads to increased vulnerability for mental and metabolic disorders. We have previously shown that a low dietary ω-6/ω-3 polyunsaturated fatty acid (PUFA) ratio protects against ELS-induced cognitive impairments. Due to the importance of the gut microbiota as a determinant of long-term health, we here study the impact of ELS and dietary PUFAs on the gut microbiota and how this relates to the previously described cognitive, metabolic, and fatty acid profiles. Male mice were exposed to ELS via the limited bedding and nesting paradigm (postnatal day (P)2 to P9 and to an early diet (P2 to P42) with an either high (15) or low (1) ω-6 linoleic acid to ω-3 alpha-linolenic acid ratio. 16S rRNA was sequenced and analyzed from fecal samples at P21, P42, and P180. Age impacted α- and ß-diversity. ELS and diet together predicted variance in microbiota composition and affected the relative abundance of bacterial groups at several taxonomic levels in the short and long term. For example, age increased the abundance of the phyla Bacteroidetes, while it decreased Actinobacteria and Verrucomicrobia; ELS reduced the genera RC9 gut group and Rikenella, and the low ω-6/ω-3 diet reduced the abundance of the Firmicutes Erysipelotrichia. At P42, species abundance correlated with body fat mass and circulating leptin (e.g., Bacteroidetes and Proteobacteria taxa) and fatty acid profiles (e.g., Firmicutes taxa). This study gives novel insights into the impact of age, ELS, and dietary PUFAs on microbiota composition, providing potential targets for noninvasive (nutritional) modulation of ELS-induced deficits. IMPORTANCE Early-life stress (ELS) leads to increased vulnerability to develop mental and metabolic disorders; however, the biological mechanisms leading to such programming are not fully clear. Increased attention has been given to the importance of the gut microbiota as a determinant of long-term health and as a potential target for noninvasive nutritional strategies to protect against the negative impact of ELS. Here, we give novel insights into the complex interaction between ELS, early dietary ω-3 availability, and the gut microbiota across ages and provide new potential targets for (nutritional) modulation of the long-term effects of the early-life environment via the microbiota.


Asunto(s)
Ácidos Grasos Omega-3 , Microbioma Gastrointestinal , Estrés Psicológico , Animales , Masculino , Ratones , Bacterias , Bacteroidetes , Ácidos Grasos/administración & dosificación , Ácidos Grasos Omega-3/administración & dosificación , Ácidos Grasos Insaturados/administración & dosificación , Firmicutes , ARN Ribosómico 16S/genética
18.
Microbiol Spectr ; 10(3): e0066622, 2022 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-35543559

RESUMEN

Bacillus cereus spores, like most Bacillus spores, can survive for years and germinate when their surroundings become suitable, and germination proteins play an important role in the initiation of germination. Because germinated spores lose the extreme resistance of dormant spores, information on the function of germination proteins could be useful in developing new strategies to control B. cereus spores. Prior work has shown that (i) the channel protein SpoVAEa exhibits high-frequency movement in the outer leaflet of the inner membrane (IM) in dormant B. subtilis spores and (ii) the formation of the foci termed germinosomes between two germination proteins, the germinant receptor GerR and the scaffold protein GerD, in developing B. cereus spores is slower than foci formation by GerR and GerD individually. However, the movement dynamics of SpoVAEa in B. cereus spores, and the behavior of the germinosome upon B. cereus spore germination, are not known. In this study, we found that SpoVAEa fluorescent foci in dormant B. cereus spores move on the IM, but slower than in B. subtilis spores, and they likely co-localize transiently with GerD-mScarlet-I in the germinosome. Our results further indicate that (i) the expression of GerR-SGFP2 and SpoVAEa-SGFP2 with GerD-mScarlet-I from a plasmid leads to more heterogeneity and lower efficiency of spore germination in B. cereus, and (ii) germinosome foci observed by Fluorescence resonance energy transfer (FRET) between GerR-SGFP2 and GerD-mScarlet-I can be lost soon after the spore-phase transition. However, this is not always the case, as some GerR-SGFP2 and GerD-mScarlet-I foci continued to exist, co-localize, and even show a weak FRET signal. These data highlight the heterogeneous behavior of spore germination protein complexes and indicate that some complexes may persist beyond the initiation of germination. IMPORTANCE Bacillus cereus is commonly present in soil and infects humans via contaminated food. In this study, we used B. cereus spores to investigate the movement of the spore-specific inner membrane (IM) channel protein SpoVAEa, the interaction between SpoVAEa and the germinosome scaffold protein GerD, and the dynamics of germinosomes with GerR and GerD in spore germination. Our results expand upon observations of interactions between specific B. cereus spore germination proteins, in particular the GerR germinant receptor A, B, and C subunits and GerD, as well as those between SpoVAEa and GerD. The approaches used in this work could also be used to examine the interactions between GerD and SpoVAEa and other germination proteins in spores of other Bacillus species.


Asunto(s)
Reflujo Gastroesofágico , Esporas Bacterianas , Bacillus cereus/genética , Bacillus subtilis/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Reflujo Gastroesofágico/metabolismo , Humanos , Esporas Bacterianas/genética , Esporas Bacterianas/metabolismo
19.
Front Oral Health ; 3: 851786, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35464779

RESUMEN

Candida albicans and Staphylococcus aureus account for most invasive fungal and bacterial bloodstream infections (BSIs), respectively. However, the initial point of invasion responsible for S. aureus BSIs is often unclear. Recently, C. albicans has been proposed to mediate S. aureus invasion of immunocompromised hosts during co-colonization of oral mucosal surfaces. The status of the oral immune system crucially contributes to this process in two distinct ways: firstly, by allowing invasive C. albicans growth during dysfunction of extra-epithelial immunity, and secondly following invasion by some remaining function of intra-epithelial immunity. Immunocompromised individuals at risk of developing invasive oral C. albicans infections could, therefore, also be at risk of contracting concordant S. aureus BSIs. Considering the crucial contribution of both oral immune function and dysfunction, the aim of this review is to provide an overview of relevant aspects of intra and extra-epithelial oral immunity and discuss predominant immune deficiencies expected to facilitate C. albicans induced S. aureus BSIs.

20.
Sci Rep ; 12(1): 4944, 2022 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-35322191

RESUMEN

The SpoVA proteins make up a channel in the inner membrane (IM) of Bacillus subtilis spores. This channel responds to signals from activated germinant receptors (GRs), and allows release of Ca2+-DPA from the spore core during germination. In the current work, we studied the location and dynamics of SpoVAEa in dormant spores. Notably, the SpoVAEa-SGFP2 proteins were present in a single spot in spores, similar to the IM complex formed by all GRs termed the germinosome. However, while the GRs' spot remains in one location, the SpoVAEa-SGFP2 spot in the IM moved randomly with high frequency. It seems possible that this movement may be a means of communicating germination signals from the germinosome to the IM SpoVA channel, thus stimulating CaDPA release in germination. The dynamics of the SpoVAEa-SGFP2 and its surrounding IM region as stained by fluorescent dyes were also tracked during spore germination, as the dormant spore IM appeared to have an immobile germination related functional microdomain. This microdomain disappeared around the time of appearance of a germinated spore, and the loss of fluorescence of the IM with fluorescent dyes, as well as the appearance of peak SpoVAEa-SGFP2 fluorescent intensity occurred in parallel. These observed events were highly related to spores' rapid phase darkening, which is considered as due to rapid Ca2+DPA release. We also tested the response of SpoVAEa and the IM to thermal treatments at 40-80 °C. Heat treatment triggered an increase of green autofluorescence, which is speculated to be due to coat protein denaturation, and 80 °C treatments induce the appearance of phase-grey-like spores. These spores presumably have a similar intracellular physical state as the phase grey spores detected in the germination but lack the functional proteins for further germination events.


Asunto(s)
Bacillus subtilis , Esporas Bacterianas , Bacillus subtilis/metabolismo , Proteínas Bacterianas/metabolismo , Colorantes Fluorescentes/metabolismo , Lípidos de la Membrana/metabolismo , Ácidos Picolínicos/metabolismo , Esporas Bacterianas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...